Y^3+9y^2+23y+15=0

Simple and best practice solution for Y^3+9y^2+23y+15=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y^3+9y^2+23y+15=0 equation:



^3+9Y^2+23Y+15=0
We add all the numbers together, and all the variables
9Y^2+23Y=0
a = 9; b = 23; c = 0;
Δ = b2-4ac
Δ = 232-4·9·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-23}{2*9}=\frac{-46}{18} =-2+5/9 $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+23}{2*9}=\frac{0}{18} =0 $

See similar equations:

| 10y2-250=0 | | X^2-64x-180=0 | | 14v+6=2(5+7v)–4 | | –12—4n=20 | | 10/d=1/6 | | -4u-4+6u=2u+2-8 | | 6h+17+16h=20h-15 | | v-8=60 | | $35+p=$52.50 | | -85=5-6(1-7n) | | n+39=92 | | -4x+2(x-2)=12 | | 56x^2+9x-2=0 | | 63/9=z/1 | | 2x+32+6x-2=85 | | -1(-4x+7=-7) | | -85=5-691-7n | | -5s=-4s+17 | | x/12-18=2 | | 2x-x+1=-x+1 | | 15=–3n | | 1/4(20-4a)=5-a | | -w+3-w=74w | | d+-12=6 | | 4r-19=8r+9 | | 3=4(w-3)-7w | | 14w+27=108 | | 5x+31=85 | | (-3,0)m=5 | | 1+v+7=-6-6v | | -2/9w=-12 | | 8j-10=10+4j |

Equations solver categories